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We introduce quasiprobabilities based on the so-called squeezed states to 
represent the density operator of an oscillator. Such representations become 
especially useful for oscillators designed to display, strong excitation notwith- 
standing, pronounced quantum features such as squeezing of the quantum 
fluctuations of certain observables below the limit characteristic of coherent 
states. 
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1. I N T R O D U C T I O N  

Among  the quan tum states (~) an oscillator is capable of assuming, the well- 
known coherent  states are the most  nearly classical ones with respect to the 
statistics they assign to the position x and the m o m e n t u m  p. Neither  x nor  
p is sharp in a coherent  state, but  their uncertainty product  takes on the 
min imum value compatible with their commuta tor .  Moreover ,  the respec- 
tive variances equal one another  if expressed in their natural  quan tum 
units. Pictorially speaking, the quan tum fluctuations inherent in a coherent  
state may  be represented by a circular disk a round  the phase locus of the 
state with the disk area determined by Planck's  constant.  

There is an abundance  of experiments, most  notably in quan tum 
optics, in which a linear or nonlinear oscillator becomes sufficiently highly 
and coherently excited for its quan tum behavior  to have a close-to-classical 
character. It is typical, then, that  the oscillator can be described by, if not  a 
single, a mixture of coherent  states with a weight corresponding to small 
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position and momentum spreads. The weight in question, the so-called P 
function, then tends to be of narrow support but well behaved with respect 
to its "phase space" arguments. In such cases the P function behaves, in 
many respects, like an ordinary classical phase space densityJ 1'2) 

There is, on the other hand, no lack of processes endowing oscillators 
with a high degree of excitation and yet very nonclassical characteristics. In 
particular, great effort is currently being devoted to squeezing the variance 
of either the position or the momentum below the coherent-state value at 
the expense, of course, of increasing the other of the two variances as 
demanded by the uncertainty principle (see refs. 3 and 4 for review). 

An ideal squeezed state (5'61 resembles a coherent state inasmuch as it is 
associated with a point in classical phase space and has the minimal 
product of position and momentum uncertainties. It differs from a coherent 
state in that the phase space area of uncertainty around the locus is elliptic 
rather than circular in shape. The quantum fluctuations are enhanced 
along the major axis of the ellipse and reduced along the minor axis. The 
nonclassical nature of a squeezed state is reflected, for instance, in the fact 
that the corresponding density operator does not possess a diagonal 
representation with respect to coherent states with a well-behaved P 
function. 

The strict realization of any minimum uncertainty state, coherent or 
squeezed, is not an easy matter for experimenters. However, as already 
mentioned, an oscillator excited to nearly classical behavior can usually be 
described by a mixture of coherent states with a well-behaved P function of 
narrow phase space support. The same will in general not be true for an 
oscillator squeezed to anisotropic variances, but in that case a represen- 
tation by a mixture of squeezed states with a smooth weight function 
should be possible. 

This paper is organized as follows. We briefly review coherent states 
in Section 2 and squeezed states in Section 3. In Section 4 we introduce a 
one-parameter family of squeezed-state-based quasiprobability densities 
generalizing a similar family based on coherent states. (7 9) In particular, the 
analogues of the familiar P, Q, and Wigner functions are members of that 
family. Section 5 is devoted to the explicit relation between coherent-state- 
based and squeezed-state-based quasiprobabilities. Every coherent-state- 
based quasiprobability can be obtained from every squeezed-state-based 
one (and vice versa) as a convolution of the latter with a suitable Gaussian. 
The Gaussian in question is determined by the squeezing parameter and 
the indices specifying the quasiprobabilities within the respective families. 
As a first aplication, we calculate in Section 6 the squeezed-state-based 
quasiprobabilities representing a single squeezed state. Section 7 provides 
an important tool for further applications by establishing the rules for c o n -  
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structing evolution equations for quasiprobabilities from a given evolution 
equation of the density operator. Finally, we illustrate our concepts for the 
problem of subthreshold subharmonic generation in Section 8. 

2. C O H E R E N T  STATES 

As is well known, the harmonic part H o of any oscillator Hamiltonian 
H can be diagonalized with the help of a pair of non-Hermitian operators a 
and a + which obey [a, a + ] = 1 and give H o = hco(a +a + 1). The excitation 
quanta described by H o are annihilated by a and created by its adjoint a +, 
as is obvious from their action on the n-quantum eigenstate In) of a+a or 
H o, a l n )  = n l / 2 l n -  1) .  

Coherent states of an oscillator may be defined (1~ as eigenstates of the 
annihilator a, 

a [~)  =~F~)  (2.1) 

with the dimensionless eigenvalue ~ an arbitrary complex number. It is 
intuitive to associate a point in classical phase space with the amplitude c~ 
through the expectation values of the position x and the momentum 
p = mac, 

c~ = �89 ( x ) / X o  + i (  p )/Po) (2.2) 

where Xo= (h/2mo)) ~/2 and po = (hmco/2) 1/2 are natural quantum units of 
the position and the momentum. If expressed in these units, the coherent- 
state variances of x and p become equal, 

( (Ax/xo)  2) = ( (Ap/po) 2) = 1 (2.3) 

Both variances are independent of the amplitude c~. Their product has the 
minimal value allowed by the uncertainty principle. 

A useful equivalent definition (1~ describes the coherent state la)  as 
generated from the vacuum [0) by the unitary displacement operator 

D(~) = e ~"+ -~*a (2.4) 

le)  = D(cr (2.5) 

The operator D(c 0 is quite appropriately called the displacement operator 
in view of the identity 

D + (~) aD(cr = a + ~ (2.6) 

which, incidentally, yields an immediate proof of the equivalence of (2.5) 
and (2.1). 
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The coherent states are overcomplete and permit the following well- 
known resolution of the unit operator 

1 = -  d2~ f e ) ( e f  (2.7) 
TC 

where the integral extends over the whole complex ~ plane. Similarly, a 
large class of density operators allow for a diagonal representation of the 
form 

p = f d2a P(a) I~) {cq (2.8) 

with the so-called P function as a weight. If such a P function exists as a 
reasonably well-behaved function of ~ and ~* or at least as a tempered 
distribution,(2.10/its moments give the means of normally ordered products 
of creation and annihilation operators as 

(a+"~a '~) = t r  a+ma~p = f d2e ~*~c~nP (2.9) 

The latter property suggests that we interpret P as a quasiprobability 
density. 

A much better behaved quasiprobability which in fact exists for any 
density operator and is nonnegative throughout the c~ plane is the socalled 
Q function, 

Q(c,) =-1 <el p Ic~> (2.10) 
7C 

The moments of Q are the means of antinormally ordered products aria +m. 
A continuous class of quasiprobabilities can be defined through their 
convolution with a normalized Gaussian, (7 9) 

Q(e)=l(d2flW~(fl)exp(=e J el le -- fll 2)' O~<e~<l (2.11) 

In the limit e =0 ,  the Gaussian in (2.11) becomes a delta function such that 
W0(c~ ) is just Q(c~). As other important special cases, (2.11) contains the 
Wigner function for g = �89 and the P function for e = 1. In fact, the identity 
(2.11) for e =  1 can be obtained directly by taking the expectation value 
with respect to a coherent state on both sides in (2.8) and recalling the 
scalar product of two coherent states 

( e l f l )  = exp(c~*fl -- �89 Ic~l 2 - �89 Ifll 2) (2.12) 
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When the convolution in (2.11) is unfolded by a Fourier transform it 
becomes obvious that the quasiprobabilities W~(e) tend to become 
increasingly singular as the width e of the Gaussian in (2.11) is increased 
toward unity. 

Means of normally ordered products of a and a + can be calculated 
with the help of W~(~) through (7 9) 

( a + m a ~ ) = f d 2 ~ ( ~ * + ( 1 - ~ ) - ~ ) m ( ~ + ( 1 - ~ ) ~ - ~ - g )  n W~(~) (2.13) 

Strange as the densities W~(x)  for general e may appear, these functions 
have a certain usefulness with respect to the dynamics of linear and non- 
linear oscillators. A given yon Neumann or master equation of motion for 
the density operator p( t )  can be translated into a partial differential 
operation for W~(c~, t), W~ = L~ W~, where the generator L~: is a differential 
operator with respect to c~ and ~* and contains the width e as a parameter. 
Approximate or even exact solutions of that differential equation are often 
found to be most easily accessible when e is confined to certain restricted 
subintervals of 0 ~< g ~< 1. (1~) 

3. S Q U E E Z E D  S T A T E S  

With the help of the unitary squeezing operator 

S(7) = exp [�89 2 - �89 +2) {3.1) 

we introduce squeezed states as (5'6~ 

]~, 7 )  =O(~)  S(q)10)  (3.2) 

allowing ~ and 7 to be arbitrary complex numbers. The states [~, 7 )  thus 
form a four-parameter family. Evidently, for 7 = 0 the states (3.2) reduce to 
ordinary coherent states, [c~, 0> = I~)- 

The physical meaning of the parameter 7, 

rl = re iz~ (3.3) 

becomes obvious when we use the identity 

S + (7) aS (7 )  = a cosh r -  a+e  i2~ sinh r (3.4) 

in calculating expectation values of observables with respect to the states 
(3.2). We immediately infer 

(c~, 7[ a Ic~, t /)  = (01S+(7) (a  + :0 S (7 ) [0 )  = ~  (3.5) 

822/53/1-2-23 



350 Haake and Wilkens 

Similarly, the mean of any linear combination of a and a + (e.g., x or p) is 
independent of 0 and thus equal to the mean with respect to the coherent 
state I~). In order to meet observable differences between the coherent 
state Icr and the squeezed state I~, 0) ,  we must therefore consider second- 
or higher-order moments of a and a +. To that end, it is appropriate to 
introduce Hermitian linear combinations of a and a + which, in contrast to 
x and p, are designed such as to reveal the role of the phase 0 distinguished 
by the squeezing parameter t/, 

Xo = ae i~ + a + ei~ 
(3.6) 

Xo + ,V2 = (1/ i)(ae -io _ a + e i~ 

These special observables obey, due to (3.4), 

S + ( q ) X o S ( O  ) = e  rX o 
(3.7) 

S+ (0) Xo+ ~/2S(0) = e +rXo+ =/2 

They are the only nontrivial linear combinations which reproduce, to 
within a scale factor, under the unitary transformation S(0), rather than 
getting mixed. 

In pursuing our goal of clarifying the physical meaning of 0, it is 
worthwhile to discuss, as a final preparation, the unitary transformation 
under S(0) of the displacement D(~). From (3.4) we find the transformed 
displacement operator to be again a displacement operator, 

S+(0) D(cr S(0) = D(a(0)) (3.8) 

the new displacement being 

~(0) = ~ cosh r + ~*e i20 sinh r (3.9) 

It follows that the squeezed state (3.2) can be rewritten as 

1~, 0 )  = S(0) D(~(0)) 10) = S(0) 1~(0)) (3.10) 

i.e., as the coherent state 1~(0)) acted upon by the unitary squeezer S(0). 
Equipped with this reinterpretation of [u, 7/), we consider the variances 

<~, ol (Axo) 21~, o> = <~(~)1 S+(AXo)2S I~(n)> 

=e-2"(~(0)1 (z~AVo) 2 1(~(0)> 

and, similarly, 

= e  2r (3.11) 

(~ ,  0] (AXo+~/2) 2 ]~, 0 )  =e+Zr (3.12) 

It is now obvious that q is appropriately called the squeezing parameter. Its 
modulus r measures the degree of asymmetry between the variances of Xo 
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and Xo + ~/2- The angles 0 and 0 + ~z/2, on the other  hand, give the direc- 
tions of maximum squeezing and maximum stretching, respectively. As for 
a coherent  state, the product  of the squeezed-state variances (3.11), (3.12) 
takes on the minimum value compatible with the uncertainty principle. 

It may be worthwhile to point  out  that  the squeezed state 1~, r/)  can 
be interpreted as a coherent  state with respect to the reversely [with 
respect to (3.4)] squeezed annihi lator  

a(rl) = S(q)  aS + (tl) 

= a cosh r + a+e i2~ sinh r 

with the eigenvalue (3.9). Indeed, by using (3.10), we have 

a(~/) Ic~, q )  = S(rl) aS+ (rl) S(r/) I~(r/) ) 

(3.13) 

= ~(tl) le, q )  (3.14) 

4. Q U A S I P R O B A B I L I T I E S  B A S E D  ON S Q U E E Z E D  S T A T E S  

For  any fixed value of the squeezing parameter  ~/ the set of complex 
numbers  e corresponds to an overcomplete  set of nonor thogona l  states 
[c~, r/). In analogy with (2.7), we have as a resolution of unity (5'6) 

= (1/~) f d2~ ]g; t 1 ) ( ~ ;  171 (4.1) 1 

which is most  easily proven by rewriting the squeezed state according to 
(3.10) and checking that the t ransformat ion c~--,c~(t/) given in (3.9) is 
canonical  and thus has a Jacobian equal to unity. The integral in (4.1) can 
therefore be changed into one over ~(t/) at fixed r/, 

f d2~x(r/) S( r / ) I~(~) )  (~(~)1 S+(~)  (1/~) 

which is indeed equal to the unit opera tor  due to (2.7) and the unitary of 
S(~). 

As a natural  generalization of (2.8), we now introduce the diagonal 
representat ion of a density opera tor  as 2 

p = dZc~ P(~(q); t/)I~, r/)(c~, I/I 

= d2~x P(a; tl) S(q)  I " ) ( <  S+(~)  (4.2) 

2 Note that the integral over the complex c~ plane can as well be extended over the complex 
~(~/) plane. It is for the sake of convenience that we define P(:~(q); rl) to have the natural 
arguments :~(n) and ct*(rl) rather than ~ and c~* 
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Like the ordinary P function P(c 0 = P(e(0); 0), the density P(c~(;7); q) need 
not necessarily exist for a given density operator. The generalization of the 
Q function (2.10). 

Q(c~(t/); ;7) = 1  <c~; ;7] p ]~; ;7> (4.3) 
7r 

must always exist, however. By taking expectation values with respect to a 
squeezed state in (4.2) and using the scalar product 

(/~; ~1~; ~ )  = ~/~(~) I c~(;7)) 

= exp Eft*(;7) ~(;7) -- �89 lfi(;7)l 2 - 1 t~(;7)[ 2 ] (4.4) 

we find that P(c~; ;7) and Q(cq ;7) are related to one another through the 
convolution with a Gaussian. Finally, by considering the width of the latter 
Gaussian as a free parameter, we generate, in parallel to (2.11), a whole 
class of new quasiprobabilities through 

Q(c~(;7);;7)=--1 fd2fl e j~ ~(,7)12/. We(fl;;7), 0 ~ < ~ < 1  (4.5) 
g8 

Obviously, W~(c~; ;7) interpolates between P(cr ;7) = WI(c~; ~/) and Q(cr ;7) = 
W0(~; ;7). We should also note that W~(cq q) bears a relation to a(;7), a+(;7) 
analogous to that of W~(c~) to a, a +. In particular, the moments 
(a+(;7) m a(;7) n) are given by (2.13) with W~(a; t/) replacing W~(e). 

5. S Q U E E Z E D - S T A T E - B A S E D  V E R S U S  COHERENT-STATE-  
BASED Q U A S I P R O B A B I L I T I E S  

The convolution identity (4.5) relates different quasiprobabilities 
within a family determined by a fixed value of the squeezing parameter ;7. 
We now propose to relate the quasiprobabilities with nonzero r/ to those 
pertaining to t /= 0, i.e., to coherent states. To that end it is convenient to 
represent the density operator in normally ordered from, O'2'12) 

d 2 
p=f---~e ca+ er Z({) (5.1) 

where the characteristic function 

)~({) = tr e-r r p (5.2) 

is the two-dimensional Fourier transform of the O function (2.10). Indeed, 
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by taking expectation values with respect to a coherent state in (5.1), we 
obtain 

1 
Q ( e ) = 7 5 i d 2 ~ e  ~* +~*~ Z(g) (5.3) 

In complete analogy to (5.1), we may represent the density operator with 
the operators a(r/) and a+(~), defined in (3.13), arranged in normal order, 

f d2~ e e ~*~ Z({; t/) (5.4) ~a+O/) 
P =  

Since the squeezed states I:~, r/) are coherent with respect to the squeezed 
annihilator a(t/), the characteristic function 

Z(~; r/) = tr e - ~ * " ~ ) e ~ ' ~ " ) p  (5.5) 

is nothing but the Fourier transform of the squeezed-state Q function 
Q(c~(~/); r/) defined in (4.3). 

In order to relate the two characteristic functions Z({) and Z({; r/), we 
insert the inverse of the relation (3.13), 

a = a(~/) cosh r - a + ( r l ) e  i2~ sinh r 

into (5.5) and use the Baker-Campbell-Hausdorff  formula 3 to establish 
antinormal order with respect to a(r/) and a +("). As a first step, we unite 
the two exponentials in (5.2} into a single one, 

Z ( { ) = e x p ( - - l ~ * ) t r p e x p [ - - a ( t l ) ~ * ( t l ) + a + ( t l ) { ( t l ) ]  (5.6) 

with ~(r/) as in (3.9). Splitting again to the new antinormal order, we 
obtain the desired relation 

Z({)= {exp[ - 1 ~ *  3r162 + �89 ~*(~)] } Z(~(~); . )  (5.7) 

Interestingly, the Gaussian on the right-hand side in (5.7) is not bounded 
throughout the complex ~ plane. Nonetheless, the Fourier transforms of 
both characteristic functions, being Q functions, exist and we therefore 
have 

Q(~)=~[d2~[d2f lexp[-~c~*+~*~+~(r / ) f l*~  J ~z -~*( t / ) f l ]  

x exp[ - 1 ~ ,  + �89 ~(t/)* ] Q(fl; ~/) (5.8) 

3 For any pair of operators c and d, the commutator of which commutes both with c and d, 
we have e c . ed = p. + d + It, d]/2 
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We should note that the order of the integrations in (5.8) cannot be 
reversed, due to the nonboundedness of the Gaussian just mentioned. 

It will be useful to generalize the relation just obtained by substituting 
(2.11) and (4.5) for Q(~) and Q(~;t/), respectively, so as to relate the 
coherent-state-based density W~(~) to the squeezed-state-based density 
W~(~; t/). By simply repeating the argument leading to (5.8), (a similar 
relation was obtained in ref. 9) 

We(o{): f d2~ d2/~ exp[--  g(c~* -- fi*) + ~*(~ -- fl)l 
d 

x {exp[ - (�89 - e) ~ *  + (�89 - e') ~(r/) ~*(t/)] } W~,(fl(t/); t/) 

0~<e, e'~<l (5.9) 

This relation should prove a convenient starting point for applications of 
squeezed-state-based quasiprobabilities. It obviously contains (5.8) as the 
special case e = d = 0. 

Evidently, by decreasing the width parameter e and/or increasing e', 
we counteract the tendency of the Gaussian in (5.9) to blow up as ~ ~ oo. 
It is in fact easy to check that the Gaussian remains bounded if 

(g'-- �89 >/e-- �89 for e'~>�89 (5.10a) 

o r  

(�89 s')e2~ ~< �89 S for , 1 e ~< ~ (5.10b) 

With e and e' chosen to obey (5.10), the ~ integral in (5.9) can be carried 
out. To given a compact appearance to the resulting relation between 
W~(c~) and W~(c~; t/), we introduce a Hermitian two by two matrix A 
characterizing the Gaussian in question as 

l(~*, ~)A ( ~ , ) =  ( � 8 9  ( 1 - ~ ' ) ~ ( t / ) ~ * ( t / ) ( 5 . 1 1 )  

We can then write the simple convolution identity 

x W~,(fl(tl); tl) (5.12) 

This expression loses its meaning, though, when e and e' do not obey 
(5.10), since d e t A < 0  then. Incidentally, (5.12) contains (2.11),as the 
special case r/= 0, e = 0, 
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For  further reference, we note the explicit form of the matrix A ,  

All = A22 = e' cosh 2r - e - sinh 2 r 

A12 = A*I  = (~' - �89 i2~ sinh 2r 
(5.13) 

6. QUASIPROBABIL IT IES  REPRESENTING A PURE 
SQUEEZED STATE 

The simplest example of a density opera tor  for which the squeezed- 
state-based quasiprobabili t ies W~(~(t/), t/) but  not  the coherent-state-based 
ones W~(~) exist for all values of the width parameter  e in 0 ~<e ~< 1 is the 
projector  on a squeezed state, 

P = ]~o, ~/) <~0, ~/] (6.1) 

Due to (4.2), the P function pertaining to the particular value of the 
squeezing parameter  distinguished in (6.1) reads 

P(~(t/); ~/) = 32(~(~/) _ %0/) )  = 62(~ - ao) (6.2) 

Similarly easily accessible is the corresponding Q function. With the help of 
(4.3), (4.4), we have 

Q(~(t/); t/) = _1 exp[  - Ic~(t/) - %(r/)[ 2] (6.3) 
7r 

Finally, (4.5) yields 

and this includes, as it must, the P and Q functions as the special cases 
e = 1 and e = 0, respectively. Note  that the densities W~(~(~/), ~/) exist for all 
values of e in 0 ~< e ~< 1. 

The coherent-state-based quasiprobabilit ies W~(~) can now be 
calculated with the help of (5.9), most  easily by setting e ' =  1 and using 
(6.2). The result is 

( W~(c~)=-~ ~ exp ( - ~ * + c % , c ~ - % ) A  -1 _ ~ . + % / j  (6.5) 

with the matrix A defined in (5.11) taken at e ' =  1. The range of e for which 
the density W~(c~) exists can be inferred from (5.10) with e ' =  1 as 

e~<l(1 + e  -zr) (6.6) 

It follows, in particular,  that  the coherent-state-based P function will not 
exist if r = I r/I > 0. 
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7. R E L A T I O N S  B E T W E E N  E V O L U T I O N  E Q U A T I O N S  

We now proceed to the dynamics of our oscillator, assuming an 
equation of motion for the density operator of the form 

flU) = Lp( t )  (7.1) 

In all cases of practical interest the generator L acts linearly on p(t)  and is 
representable by a fourfold series as 

L p =  ~ L,,,npqama+npaPa +q (7.2) 
mnpq 

with c-number coefficients such that L,~np u = Lpqmn. 
If the oscillator moves reversibly, the generator L is given in terms of 

the Hamiltonian as L p = - i [ H ,  p]/h. Otherwise, L contains additional 
pieces accounting for irreversible influences. 

The operator equation (7.1) implies a c-number differential equation 
for each of the quasiprobabilities W(~(~/), t; ~/), 

~, w~(~,  t; ~) = l ~,"~ w~(~,  t; rl) 

(7.3) 
/(~,'l)= 2 l(~'rl) o~*PO~q 

mnpq mnpq ~-~j] 

(e,,7) the coefficients lm,pq being uniquely determined by the Lm,pq in (7.2). As is 
well known, the differential operator (7.3) can be obtained most easily for 
the coherent-state-based P and Q functions, i.e., for r /=  0 and e = 1 or e = 0, 
by assuming the density operator p antinormally or normally ordered with 
respect a + and a .  (12)  For instance, by looking at the antinormally ordered 
form of p and using the commutator  [a, a +] = 1, we easily verify the 
translation rule 

ap --+ ~P, 

a + p --+ (~* - O/O~)P, 

pa + --+ ~*p  

pa --+ (ct - ~ / ~ *  )P  
(7.4) 

from which the c-number generator l (a'~ can be built up. Having once 
found l ~176 we may establish the generators l (~'~ pertaining to all the other 
coherent-state-based densities W~(c~) by the further translation(7.8,9, ~) 

--, 7 + (1 - e )  0 / & *  
0/&~ --+ 0/~37 (7.5) 

as is immediately checked with the help of the convolution identity (2.11). 
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Alternatively, we may wish to switch from the coherent-state-based P 
function to the squeezed-state-based density W~(e(~/);r/). The rule for 
translating, say, l (~'~ into l (~' ") can be worked out from (5.12). To find the 
differential operation on W~(c~; r/) corresponding to multiplication of P(c~) 
with ~, we represent ~P(c~) by (5.12) and note, as a first step, the identity 

~G(c~ - 13) = (13 + A11 a/aft* - -  A 12 a/aft) G(~ - i 3) (7.6) 

obeyed by the Gaussian kernel in (5.12). By partially integrating, we shift 
the differentiations from the Gaussian onto W=(13(~/); r/) and finally use the 
linear transformation 13 ~ 13(t/) to express the resulting differential operator 
in terms of the natural independent variables of W=(13(t/); r/). In this way we 
obtain 

c~P(c~) ~ {c~ cosh r - ~*e i2~ sinh r 

+ 8 e  i20 sinh r ~3 ~? } ~-~+ (1 - ~) cosh r 0-- ~ W~(c~; r/) (7.7) 

P ( c Q ~ ( c o s h r \  ~--s e '2~ W=(c~;r/) 

Of course, by combining (7.4) and (7.7), it is possible to directly translate 
ap, a §  etc., into differential operations on W~(~; r/). 

An interesting and useful corollary of the first of the rules (7.7) arises 
for the expectation values of normally ordered products of a and a +, i.e., 
the moments of the coherent-state-based P function, 

( a + m a n ) : f d 2 e  {.}.,,,{. },z W~(~; r/) {7.s) 

with the curly brackets from (7.7). Note that the order of {. } and {. }* in 
(7.8) is immaterial since the differential operator {. } commutes with its 
complex conjugate. The result (7.8) reduces, as it must, to (2.13) in the case 
of no squeezing, ~/= 0. 

8. S U B H A R M O N I C  G E N E R A T I O N  

We here propose to illustrate the usefulness of squeezed-state-based 
quasiprobabilities for a simple and well-known process, subthreshold 
subharmonic generation. (13,14) The system to be dealt with is a damped 
oscillator stibjected to an undepletable monochromatic field, the latter 
coupling to the squared amplitude of the oscillation. To stay clear of 
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unnecessary complications, we employ the so-called rotating wave 
approximation and adopt the rotating frame in which the external field 
appears to be stationary. We then have to solve the following master 
equation for the density operator: 

t5 = - ( i / h ) [ H ,  p ]  + A p  

H =  h6a+ a + i h f ( a  2 - a + 2)/2 (8.1) 

A p  = 7 { l a p ,  a +] + [a, pa+ ]}  

The three parameters 6, f,  and 7 are the detuning between the frequencies 
of the free oscillator and the external field, the amplitude of the external 
field, and a damping constant, respectively; they are all frequencies in 
dimension. In more realistic models the undepletable field f is replaced by 
a dynamical pump mode. O3'14) 

By using (7.4), (7.7) for e = 1 we can translate the master equation 
(8.1) into a differential equation of motion for the squeezed-state-based P 
function P(c~, r/) with t/-- re i2~ a free parameter, 

P = l P  

l = ___8 E(if2 + 7)e + Fc~* ] (8.2) & 

82 82 
+ 2 sinh2 r ~ + (7e i2~ cosh r sinh r - 1F) &r 

+c.c. 

F2 = a cosh 2r + f sinh 2r sin 20 

F =  - i a  sinh 2r e i2~ + f (cosh  2 r - sinh 2 r e i4~ 

Formally, the partial differential equations (8.2) looks like the Fokker-  
Planck equation of a classical Gaussian Markov process; it actually is a 
genuine Fokker-Planck equation only if the coefficients of the second- 
order derivatives form a nonnegative matrix, the so-called diffusion matrix. 

It is easy to check and quite important to realize that the diffusion 
matrix in (8.2) has one positive and one negative eigenvalue if we set r/= 0, 
i.e., try to work with the coherent-state-based P function. We may visualize 
that situation as a tendency of P(~) to shrink in width with respect to a 
particular direction in the ~ plane and to broaden diffusively with respect 
to the orthogonal direction. In other words, the model under study tends 
to produce squeezing. 

With one diffusion coefficient negative, the coherent-state-based P 
function is not an appropriate tool for describing the dynamics of our 
model. Even if well behaved initially, P(~, t) is doomed to perish once its 
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width in any direction has shrunk to zero. We are thus led back to the con- 
clusion that no mixture of coherent states can represent a squeezed state. 

There is no reason, on the other hand, to doubt the possibility of 
representing a density operator as a mixture of suitable squeezed states 
when it contains the effects of squeezing. We must expect and do indeed 
find the diffusion matrix in (8.2) strictly positive for appropriately chosen 
values of  the squeezing parameter q. Figure 1 depicts the region in the 
complex r/ plane for which this is the case. To every point of that region 
there corresponds a squeezed-state-based P function which, if it exists 
initially, is guaranteed existence at all subsequent times. 

The remaining freedom in choosing r/ can be exploited so as to given 
to the Fokker Planck equation (8.2) a simpler structure. We might, for 
instance, determine r/ such that either the diffusion matrix or the drift 
matrix becomes isotropic in the ~ plane. Alternatively, we might enforce 
potential conditions for drift and diffusion. We have found it most con- 
venient, though, to require the stationary solution of (8.2) to be isotropic, 
i.e., to be a function of the product ~ *  only. That condition determines the 
direction of maximal squeezing through the angle 0 as 

ea~ = (7 - i6)/(72 + (52) 1/2 (8.3) 

and the magnitude of squeezing by 

sinh 2 r (72 "~- (~2)1/2 _ (72 _}_ (52 _f2)1/2 
_ (8 .4 )  2(y2 q_ ~2 __ f2)1/2 

I r a ( 9 )  

B, 5 / / J / ,  

":,'20 

8 815 Re(~]) 

Fig. 1. Within the egg-shaped region of the complex r/ plane the diffusion matrix in (8.2) is 
strictly positive. The cross distinguishes the point (8.3), (8.4) corresponding to the isotropic 
stationary P function. The plot pertains to ~/7 = -1, f/7 = 1.3. 



360 Haake and Wilkens 

The stationary P function then takes the simple Gaussian form 

P(e; ;7) = (~ sinh 2 r)  -1 exp( - ~* / s inh  2 r) 18.5) 

With the help of (7.8), we can now find all stationary expectation values. In 
particular, the mean oscillation amplitude turns out to vanish, 

( a )  = ( a  + )  = 0  (8.6) 

while the second-order moments read 

( a  2 ) - f 
2(7 + i6) 
- -  (1 + 2 ( a + a ) )  

( a  +a)  = f2/2(72 + 32 - f2)  
(8.7) 

The breakdown of our linear model at the threshold f =  (72-t-32) 1/2 is 
manifest in (8.4) and (8.7). Near and above that threshold, pump depletion 
must be taken into account. (13,14l We shall not discuss above-threshold 
subharmonic generation here, since the usefulness of squeezed-state-based 
quasiprobabilities is nicely illustrated in the context of the linear model 
already. 
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